library(tidyverse)
library(plotly)
library(DT)
library(palmerpenguins)
library(scales)
library(ggthemes)
library(hrbrthemes)
library(plotly)
GGPLOT Y plotly
Carga de bibliotecas
Carga de datos
# Carga de los datos de países
<-
paises read_csv(
"https://raw.githubusercontent.com/pf0953-programacionr/2024-ii/refs/heads/main/datos/natural-earth/paises-join-esperanzavida.csv"
)
# Mostrar paises
# ```{r}
# #| label: tabla-paises
#
# # Tabla de datos de paises
# paises |>
# filter(SUBREGION =="Eastern Europe" & POP_EST >=10000000) |>
# select(ADM0_ISO, NAME, POP_EST)|>
# arrange(desc (POP_EST))|>
# datatable(
# options = list(
# pageLength = 7,
# language = list(url = '//cdn.datatables.net/plug-ins/1.10.11/i18n/Spanish.json')
# )
# )
# ```
|>
paises arrange(NAME)|>
datatable(
options = list(
pageLength = 7,
language = list(url = '//cdn.datatables.net/plug-ins/1.10.11/i18n/Spanish.json')
) )
Uso de ggplot2
Grafico de dispersion de PIB per capita VS Esperanza de vida al nacer
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
|>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY)) +
geom_point() +
scale_x_continuous(labels = comma, limits = c(0, NA))
Warning: Removed 11 rows containing missing values or values outside the scale range
(`geom_point()`).
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
|>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY, color= INCOME_GRP)) +
geom_point() +
scale_x_continuous(labels = comma, limits = c(0, NA))
Warning: Removed 11 rows containing missing values or values outside the scale range
(`geom_point()`).
|>
paises select(NAME, GDP_PC,LIFE_EXPECTANCY) |>
filter(GDP_PC>= 150000 & LIFE_EXPECTANCY>=80)
# A tibble: 1 × 3
NAME GDP_PC LIFE_EXPECTANCY
<chr> <dbl> <dbl>
1 Liechtenstein 180857. 84.3
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
|>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY, shape= CONTINENT, color=ECONOMY)) +
geom_point() +
scale_x_continuous(labels = comma, limits = c(0, NA))
Warning: The shape palette can deal with a maximum of 6 discrete values because more
than 6 becomes difficult to discriminate
ℹ you have requested 8 values. Consider specifying shapes manually if you need
that many have them.
Warning: Removed 26 rows containing missing values or values outside the scale range
(`geom_point()`).
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
# con formas y colores correspondientes al continente
|>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY, shape = CONTINENT, color = CONTINENT)) +
geom_point() +
scale_x_continuous(labels = comma, limits = c(0, NA)) +
scale_shape_manual(values = c(0, 1, 2, 3, 4, 5, 6, 7)) +
scale_color_manual(values = c("#ff0000", "blue", "green", "purple", "orange", "brown", "pink", "yellow"))
#| laber: ggplo2-6
#| warning: false
#| message: false
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
# con formas y colores correspondientes al continente
|>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY, size= POP_EST, color = CONTINENT)) +
geom_point() +
scale_x_continuous(labels = comma, limits = c(0, NA)) +
scale_color_manual(values = c("#ff0000", "blue", "green", "purple", "orange", "brown", "pink", "yellow"))
Warning: Removed 11 rows containing missing values or values outside the scale range
(`geom_point()`).
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
# en África y Europa coloreado por continente
# + curva de tendencia
|>
paises filter(CONTINENT == 'Africa' | CONTINENT == 'Europe') |>
ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY, color = CONTINENT)) +
geom_point() +
geom_smooth() +
scale_x_continuous(labels = comma, limits = c(0, NA)) +
scale_y_continuous(labels = comma, limits = c(50, 90))
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Warning: Removed 7 rows containing non-finite outside the scale range
(`stat_smooth()`).
Warning: Removed 7 rows containing missing values or values outside the scale range
(`geom_point()`).
|>
penguins ggplot(aes(x= body_mass_g, y= bill_length_mm, color= island, size = flipper_length_mm)) +
geom_point()
Facets
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
# + paneles por continente
|>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY)) +
geom_point() +
facet_wrap(~ INCOME_GRP, ncol = 2) +
scale_x_continuous(labels = comma, limits = c(0, NA))
Warning: Removed 11 rows containing missing values or values outside the scale range
(`geom_point()`).
Títulos, etiquetas, estilos y colores
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
# + paneles por región y subregión de la ONU
|>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY)) +
geom_point() +
facet_grid(REGION_UN ~ INCOME_GRP) +
scale_x_continuous(labels = comma, limits = c(0, NA))
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
# en África y Europa coloreado por continente
# + curva de tendencia
|>
paises filter(CONTINENT == 'Africa' | CONTINENT == 'Europe') |>
ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY, color = CONTINENT)) +
geom_point() +
geom_smooth() +
scale_x_continuous(labels = comma, limits = c(0, NA)) +
scale_y_continuous(labels = comma, limits = c(50, 90)) +
ggtitle("PIB per cápita vs esperanza de vida al nacer por continente") +
xlab("PIB per cápita (USD)") +
ylab("Esperanza de vida (años)") +
labs(subtitle = "Datos de África y Europa",
caption = "Fuentes: Natural Earth y Banco Mundial",
color = "Continente")+
theme_ft_rc()
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Warning: Removed 7 rows containing non-finite outside the scale range
(`stat_smooth()`).
Warning: Removed 7 rows containing missing values or values outside the scale range
(`geom_point()`).
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
# coloreado por continente
|>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY, color = CONTINENT)) +
geom_point() +
geom_smooth() +
scale_x_continuous(labels = comma, limits = c(0, NA)) +
scale_y_continuous(labels = comma, limits = c(50, 90)) +
ggtitle("PIB per cápita vs esperanza de vida al nacer por continente") +
xlab("PIB per cápita (USD)") +
ylab("Esperanza de vida (años)") +
labs(caption = "Fuentes: Natural Earth y Banco Mundial",
color = "Continente") +
scale_colour_brewer(palette = "Set2", direction = -1) +
theme_ipsum() # estilo de hrbrthemes
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Warning: Removed 11 rows containing non-finite outside the scale range
(`stat_smooth()`).
Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: span too small. fewer data values than degrees of freedom.
Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: pseudoinverse used at 10592
Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: neighborhood radius 506.81
Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: reciprocal condition number 0
Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: There are other near singularities as well. 4.0698e+07
Warning in predLoess(object$y, object$x, newx = if (is.null(newdata)) object$x
else if (is.data.frame(newdata))
as.matrix(model.frame(delete.response(terms(object)), : span too small. fewer
data values than degrees of freedom.
Warning in predLoess(object$y, object$x, newx = if (is.null(newdata)) object$x
else if (is.data.frame(newdata))
as.matrix(model.frame(delete.response(terms(object)), : pseudoinverse used at
10592
Warning in predLoess(object$y, object$x, newx = if (is.null(newdata)) object$x
else if (is.data.frame(newdata))
as.matrix(model.frame(delete.response(terms(object)), : neighborhood radius
506.81
Warning in predLoess(object$y, object$x, newx = if (is.null(newdata)) object$x
else if (is.data.frame(newdata))
as.matrix(model.frame(delete.response(terms(object)), : reciprocal condition
number 0
Warning in predLoess(object$y, object$x, newx = if (is.null(newdata)) object$x
else if (is.data.frame(newdata))
as.matrix(model.frame(delete.response(terms(object)), : There are other near
singularities as well. 4.0698e+07
Warning: Removed 11 rows containing missing values or values outside the scale range
(`geom_point()`).
Warning in max(ids, na.rm = TRUE): ningun argumento finito para max; retornando
-Inf
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
font family not found in Windows font database
plotly
# Gráfico de dispersión de PIB per cápita vs esperanza de vida al nacer
<-
grafico_ggplot2 |>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY, color = CONTINENT)) +
geom_point(aes(
# datos que se muestran al colocar el ratón sobre un punto
text = paste0( #pasteO aclara que no va por defecto ningun espacio, solo se pega lo #estrictamente escrito en el codigo
"PIB per cápita: ", GDP_PC, "\n",
"Esperanza de vida: ", LIFE_EXPECTANCY,"\n",
"Pais: ", NAME
)+
)) scale_x_continuous(labels = comma, limits = c(0, NA)) +
scale_y_continuous(labels = comma, limits = c(50, 90)) +
ggtitle("PIB per cápita vs esperanza de vida al nacer por continente") +
xlab("PIB per cápita (USD)") +
ylab("Esperanza de vida (años)") +
labs(caption = "Fuentes: Natural Earth y Banco Mundial",
color = "Continente") +
labs(color = "Población estimada") +
theme_ipsum() # estilo de hrbrthemes
# Gráfico plotly
ggplotly(grafico_ggplot2, tooltip = "text") |>
config(locale = 'es') # para mostrar los controles en español
tipos de gráficos
# Gráfico de dispersión PIB per cápita vs esperanza de vida
# + línea de tendencia
<-
grafico_dispersion_ggplot2 |>
paises ggplot(aes(x = GDP_PC, y = LIFE_EXPECTANCY)) +
geom_point(aes(
text = paste0(
"País: ",
NAME,"\n",
"PIB per cápita: ",
::comma(round(GDP_PC, 2)),
scales"\n",
"Esperanza de vida: ",
round(LIFE_EXPECTANCY, 2)
)+
)) geom_smooth(method = "lm") +
scale_x_continuous(labels = comma, limits = c(0, NA)) +
scale_y_continuous(labels = comma, limits = c(50, 90)) +
ggtitle("PIB per cápita vs esperanza de vida al nacer") +
xlab("PIB per cápita (USD)") +
ylab("Esperanza de vida (años)") +
labs(caption = "Fuentes: Natural Earth y Banco Mundial") +
theme_economist()
Warning in geom_point(aes(text = paste0("País: ", NAME, "\n", "PIB per cápita:
", : Ignoring unknown aesthetics: text
# Gráfico de dispersión plotly
ggplotly(grafico_dispersion_ggplot2, tooltip = "text") |>
config(locale = 'es')
`geom_smooth()` using formula = 'y ~ x'
Warning: Removed 11 rows containing non-finite outside the scale range
(`stat_smooth()`).
Histogramas
# Histograma ggplot2 de distribución del PIB per cápita
<-
histograma_ggplot2 |>
paises ggplot(aes(x = LIFE_EXPECTANCY)) +
geom_histogram(
aes(
text = paste0(
"PIB per cápita (valor medio del rango): $", round(after_stat(x), 2), "\n",
"Frecuencia: ", after_stat(count)
)
), bins = 10
+
) #scale_x_continuous(labels = comma, limits = c(0, NA)) +
#coord_cartesian(ylim = c(0, 40)) +
ggtitle("Distribución del PIB per cápita") +
xlab("Esperanza de vida al nacer (años)") +
ylab("Frecuencia") +
labs(subtitle = "Datos de 201 países", caption = "Fuentes: Natural Earth y Banco Mundial") +
theme_economist()
Warning in geom_histogram(aes(text = paste0("PIB per cápita (valor medio del
rango): $", : Ignoring unknown aesthetics: text
# Histograma plotly
ggplotly(histograma_ggplot2, tooltip = "text") |>
config(locale = 'es')
Warning: Removed 11 rows containing non-finite outside the scale range
(`stat_bin()`).
grafico de torta
# Agrupar y resumir los datos
<- paises |>
suma_poblacion_por_region group_by(REGION_UN) |>
summarise(POP_TOTAL = sum(POP_EST))
# Calcular porcentajes
<- suma_poblacion_por_region |>
porcentaje_poblacion_por_region mutate(POP_PCT = round(POP_TOTAL / sum(POP_TOTAL) * 100, 1))
# Gráfico de pastel
<-
grafico_pastel_ggplot2 |>
porcentaje_poblacion_por_region ggplot(aes(x = "", y = POP_TOTAL, fill = REGION_UN)) +
geom_bar(width = 1, stat = "identity") +
coord_polar(theta = "y") +
geom_text(
aes(label = paste0(POP_PCT, "%")),
color = "black",
position = position_stack(vjust = 0.6) # para ajustar la posición del texto en cada porción
+
) labs(title = "Distribución de la población por región de la ONU",
x = NULL,
y = NULL,
fill = "Región de la ONU") +
theme_void()
# Despliegue del gráfico
grafico_pastel_ggplot2
graficos de barras
con transformaciones estadísticas
# Gráfico de barras con conteo de países por región de la ONU
<-
grafico_barras_ggplot2 |>
paises ggplot(aes(x = fct_rev(fct_infreq(REGION_UN)))) +
geom_bar(
aes(
text = paste0(
"Cantidad de países: ", after_stat(count)
)
) +
) ggtitle("Cantidad de países por región de la ONU") +
xlab("Región de la ONU") +
ylab("Cantidad de países") +
labs(caption = "Fuente: Natural Earth") +
theme_economist()
# Gráfico de barras plotly
ggplotly(grafico_barras_ggplot2, tooltip = "text") |>
config(locale = 'es')
# Gráfico de barras con promedio de esperanza de vida
# para cada región de la ONU
<-
grafico_barras_ggplot2 |>
paises ggplot(aes(x = fct_infreq(REGION_UN), y = LIFE_EXPECTANCY)) +
geom_bar(
stat = "summary",
fun.y = "mean",
aes(
text = paste0(
"Promedio de esperanza de vida: ", round(after_stat(y), 2)
)
)+
) ggtitle("Promedio de esperanza de vida por región de la ONU") +
xlab("Región de la ONU") +
ylab("Promedio de esperanza de vida") +
labs(caption = "Fuente: ") +
theme_economist()
Warning in geom_bar(stat = "summary", fun.y = "mean", aes(text =
paste0("Promedio de esperanza de vida: ", : Ignoring unknown parameters:
`fun.y`
Warning in geom_bar(stat = "summary", fun.y = "mean", aes(text =
paste0("Promedio de esperanza de vida: ", : Ignoring unknown aesthetics: text
# Gráfico de barras plotly
ggplotly(grafico_barras_ggplot2, tooltip = "text") |>
config(locale = 'es')
Warning: Removed 11 rows containing non-finite outside the scale range
(`stat_summary()`).
No summary function supplied, defaulting to `mean_se()`
# Cálculo del promedio de esperanza de vida por región
<-
promedio_esperanza_vida_por_region |>
paises group_by(REGION_UN) |>
summarize(LIFE_EXPECTANCY_MEAN = mean(LIFE_EXPECTANCY, na.rm = TRUE))
# Despliegue por orden descendente del promedio de esperanza de vida
|>
promedio_esperanza_vida_por_region arrange(desc(LIFE_EXPECTANCY_MEAN))
# A tibble: 6 × 2
REGION_UN LIFE_EXPECTANCY_MEAN
<chr> <dbl>
1 Europe 78.6
2 Asia 74.5
3 Americas 73.5
4 Oceania 71.0
5 Africa 63.1
6 Antarctica NaN
# Gráfico de barras con promedio de esperanza de vida
# para cada región de la ONU
<-
grafico_barras_ggplot2 |>
promedio_esperanza_vida_por_region ggplot(aes(x = reorder(REGION_UN,-LIFE_EXPECTANCY_MEAN), y = LIFE_EXPECTANCY_MEAN)) +
geom_col(
aes(
text = paste0(
"Promedio de esperanza de vida: ", round(after_stat(y), 2)
)
) +
) ggtitle("Promedio de esperanza de vida por región de la ONU") +
xlab("Región de la ONU") +
ylab("Promedio de esperanza de vida") +
labs(caption = "Fuente: Natural Earth") +
theme_economist()
Warning in geom_col(aes(text = paste0("Promedio de esperanza de vida: ", :
Ignoring unknown aesthetics: text
# Gráfico de barras plotly
ggplotly(grafico_barras_ggplot2, tooltip = "text") |>
config(locale = 'es')
# Gráfico de barras con población de países
# de América
<-
grafico_barras_ggplot2 |>
paises filter(REGION_UN == "Americas") |>
ggplot(aes(x = reorder(ADM0_ISO, POP_EST), y = POP_EST/1000000)) +
geom_col(
aes(
text = paste0(
"País: ", NAME, "\n",
"Población (millones de habitantes): ", round(POP_EST/1000000, 2)
)
)+
) scale_y_discrete(expand = expansion(mult = c(0.2, 0.2))) + # agrega un 20% de espacio al inicio y al final del eje y
coord_flip() + # para mostrar barras horizontales
ggtitle("Población de países de América") +
xlab("País") +
ylab("Población (millones de habitantes)") +
labs(caption = "Fuente: Natural Earth") +
theme_economist()
Warning in geom_col(aes(text = paste0("País: ", NAME, "\n", "Población
(millones de habitantes): ", : Ignoring unknown aesthetics: text
# Gráfico de barras plotly
ggplotly(grafico_barras_ggplot2, tooltip = "text") |>
config(locale = 'es')
# Gráfico de barras apiladas por región de la ONU y nivel de economía
<-
grafico_barras_ggplot2 |>
paises ggplot(aes(x = REGION_UN, fill = ECONOMY)) +
geom_bar() +
ggtitle("Cantidad de países por región de la ONU y nivel de economía") +
xlab("Región de la ONU") +
ylab("Cantidad de países") +
labs(fill = "Nivel de economía") +
theme_minimal()
# Gráfico de barras plotly
ggplotly(grafico_barras_ggplot2) |>
config(locale = 'es')
# Gráfico de barras apiladas por región de la ONU y nivel de economía
<-
grafico_barras_ggplot2 |>
paises ggplot(aes(x = REGION_UN, fill = ECONOMY)) +
geom_bar(position = "fill") +
ggtitle("Proporción de niveles de economía en regiones de la ONU") +
xlab("Región de la ONU") +
ylab("Proporción") +
labs(fill = "Nivel de economía") +
theme_minimal()
# Gráfico de barras plotly
ggplotly(grafico_barras_ggplot2) |>
config(locale = 'es')
# Gráfico de barras agrupadas por región de la ONU y nivel de economía
<-
grafico_barras_ggplot2 |>
paises ggplot(aes(x = REGION_UN, fill = ECONOMY)) +
geom_bar(position = "dodge") +
ggtitle("Cantidad de países por región de la ONU y nivel de economía") +
xlab("Región de la ONU") +
ylab("Cantidad de países") +
labs(fill = "Nivel de economía") +
theme_minimal()
# Gráfico de barras plotly
ggplotly(grafico_barras_ggplot2) |>
config(locale = 'es')